

Cordoba Minerals Reports High-Grade Mineral Resources for the Alacran Copper and Gold Deposit

TORONTO, ONTARIO, January 5, 2017: Cordoba Minerals Corp. (TSX-V: CDB; OTCQX: CDBMF) ("Cordoba" or the "Company") and its joint-venture partner, High Power Exploration Inc. ("HPX"), a private mineral exploration company indirectly controlled by mining entrepreneur Robert Friedland's Ivanhoe Industries, LLC, are pleased to announce an initial Mineral Resource estimate for the Alacran Copper-Gold Deposit in Colombia.

Highlights (the figures referenced are at end of news release)

- The initial, pit-constrained, Inferred Mineral Resource for the Alacran Deposit is 53.52 million tonnes at 0.70% copper and 0.37 g/t gold, or 0.95% copper equivalent (CuEq), including 7.37 million tonnes at 2.14% copper and 0.41 g/t gold above 1% copper (Cu) cut off.
- The Inferred Mineral Resource is contained within a shallow, north-south trending mineralized corridor that is approximately 1.3 kilometres long and up to 355 metres wide.
- Mineral resources are reported within a conceptual open-pit shell which extends for the full length of the 1.3-kilometre corridor and to a depth of 220 metres below surface (see figure 2 and 4). The broad horizontal widths of mineral resource zones from surface are considered favorable for potential open-pit development at relatively low potential strip ratios, subject to the demonstration of economic viability (see figures 2, 4, 5 & 6).
- Copper-gold mineralization has been intercepted in drill holes below the conceptual pit shell and also at depths greater than 220 metres below surface; however, this mineralization was not included in the initial Inferred Mineral Resource due to insufficient drilling at the Mineral Resource cut-off date (see figures 4, 5 & 6). This mineralization provides the joint venture with immediate drilling targets which could materially expand the Inferred Mineral Resource.
- The Alacran mineralized system remains open to depth. Surface coppergold geochemical anomalies also indicate significant potential for additional mineralized zones to the east and west of the Mineral Resource.
- The potential for the discovery of the mineralizing source for the highgrade copper and gold at Alacran is considered strong. Drill targets have been identified and will be aggressively tested by the joint venture this year.

Inferred	Material	Grade		Met	al	Copper Equivalent		
		Copper	Gold	Copper	Gold	CuEq	CuEq	
	(Mt)	(%)	(g/t)	(MIb)	(Koz)	(%)	(MIb)	
>0.3 CuEq	53.52	0.70	0.37	827	644	0.95	1,121	
>1.0% Cu	7.37	2.14	0.41	348	98	2.42	393	

Table 1: El Alacran Mineral Resource as at October 27, 2016

* Pit constrained mineral resources are reported in relation to a conceptual Whittle pit shell. Mineral resources are not mineral reserves and do not have demonstrated economic viability. All figures are rounded to reflect the relative accuracy of the estimate. Mt: millions of tonnes; Mlb: millions of pounds; Koz: thousands of ounces.

**Copper equivalent grades are based on estimated copper and gold values, metal prices \$2.50/lb Cu and \$1300/oz gold (Au). Metal prices are not constant and are subject to change.

*** Pit constrained mineral resources are reported at a copper equivalent cut-off of 0.3% and applying assumed metal recoveries of 90% for Cu and 80% for Au. Note no metallurgical test work has been undertaken by Cordoba and the recoveries are estimates only. **** Capped copper and gold assay composites were interpolated by ordinary kriging constrained within geologically constrained copper-gold grade shell boundaries (Figure 3).

The Mineral Resource estimate was independently prepared by Mining Associates Limited ("MA"), a leading global geological, resource and mining consultancy, and is reported in accordance with National Instrument 43-101 ("NI 43-101") and the 2014 CIM Definition Standards. The Inferred Mineral Resource estimate is based on 20,200 metres of diamond drilling completed as at October 27, 2016.

Mario Stifano, President and CEO of Cordoba, commented, "We are pleased with the initial mineral resource which demonstrates the potential for the Alacran Project to host a significant tonnage of high-grade, potentially open-pittable copper-gold mineralization. This is just the beginning as our ongoing, aggressive drilling program is aimed at growing the mineral resources in size and confidence levels, extending high-grade copper- and gold-rich mineralized zones and drilling additional exploration targets with potential to add a new and significant exploration front to Alacran."

Alacran Location and Geography

The Alacran copper-gold deposit is located within the Company's San Matias Copper-Gold Project in the Department of Cordoba, Colombia, an area where access and infrastructure are considered favorable. The Alacran system is located on a topographic high in gently rolling topography, optimal for potential open-pit mining. Copper-gold mineralization at Alacran is largely hosted in a marine volcano-sedimentary package on the west-dipping limb of a faulted antiformal fold structure and partly in dioritic and felsic intrusions with sill-like geometries (Figure 1). The deposit comprises moderately- to steeply-dipping copper-gold mineralized zones, broadly concordant with host litho-stratigraphy and intrusion contacts. The copper-gold mineralization consists of chalcopyrite-pyrrhotite-pyrite veins, replacements (including massive sulfides) and disseminations that locally overprint hydrothermal magnetite-rich zones that are most strongly developed near intrusion contacts. Mineralization occurs over a strike length of more than 1,300 metres with horizontal widths up to 355 metres and has been drill-intersected to depths of 300 metres from surface.

Mineral Resource Parameters

The drilling database utilized in resource estimation was closed on October 27, 2016 and comprises 76 diamond drill-holes totaling 20,197 metres including 11,230 metres drilled by Ashmont Resources in 2011 and 2012 (see Table 3 for holes drilled by Cordoba). A total of 19,958 assay samples were used to constrain the resource estimation, of which 4,705 samples

are copper-gold mineralized, providing 2,202 two-metre assay composites used to form the resource estimate.

Composite lengths and high-grade cuts based on spatial distribution and probability plots were applied as follows:

- Copper and gold assay data was composited to two metres down hole within geological domains; a copper grade cap was applied at the 97.5th percentile in high-copper domains and 98th percentile in the lower grade domains.
- Gold assays were composited to two metres down hole within copper domains and were capped near the 98th percentile.

Block model block-size selection (XYZ 20 x 20 x 10m) is based on approximately $\frac{1}{2}$ the drill hole spacing in Mina Norte. Sub-blocking is permitted 5x5 x 2.5m for volumes. The block model is screened for LIDAR–based topography by sub-blocks.

The geological resource is constrained by sub-block within seven wireframes ("grade shells") in domains based on lithology, structure and a minimum sample grade of 0.3% CuEq and may include minor internal dilution (e.g. Figures 3, 4, 5 & 6). Gold, iron and sulfur are constrained by the low-grade CuEq shells, iron and sulfur are also estimated unconstrained to inform the waste blocks. Separate grade-shells were created for high-grade copper and gold based on grade >1% Cu and > 1g/t Au respectively.

The constraining grade shells are modelled within a corridor, elongate approximately 1.3 kilometres north-south, of up to 355 metres horizontal width and interpolated/extrapolated to depths locally reaching 300 metres from surface (Figures 2 and 3).

Copper and gold grades were interpolated into the constrained block model by domain using ordinary krige techniques. Kriging parameters are derived from a study of variography by domain. The block model was validated by statistical and visual comparison of data and estimated grades and by alternate estimation methods.

Routine bulk density measurements (747) show some variation with an average bulk density of 3.01 t/m^3 . Bulk density was calculated based on an iron regression, BD=0.0292 x Fe% + 2.5599, utilising block iron contents estimated as outlined above.

Mineral Resources have been classified as Inferred. Resource classification is based on confidence in grade continuity and geological models of the primary commodities (Cu, Au). The inferred resource lies above -30 mRL and within a conceptual Whittle pit shell (Figures 2, 5, & 6). Drill spacing in Mina Norte approximates a 40 x 40 m grid, drilling at Mina Seca has one to two holes per section.

Mineral Resources are reported at various copper grade ranges, within the 0.3% CuEq shell, clearly identifying the proportion of mineralization below 0.3% copper that is enriched in gold in the resource (Table 2) in both resource domains (Mina Norte & Mina Seca, Figure 3). Tonnages are rounded to the nearest million tonnes, copper grades are rounded to two decimal places and accessory minerals are rounded to one decimal place. Rounding as required by reporting guidelines reflect the accuracy of the estimates and may result in apparent summation differences between tonnes grade and contained metal.

Table 2: Inferred Mineral Resource at El Alacran resource at various Copper Cut-offs (total inferred resource above 0.3%
CuEq and within conceptual pit)*

Inferred	Copper	Material	Grade		Metal		Copper Equivalent	
Deposit	Cut Off	(Mt)	Copper (%)	Gold (g/t)	Copper (Mlb)	Gold (Koz)	CuEq (%)	CuEq (Mlb)
Mina	0.0 to 0.3	0.69	0.27	0.31	4	7	0.47	7
Norte	0.3 to 1.0	28.82	0.52	0.27	328	255	0.70	445
	> 1.0	4.65	1.98	0.34	203	51	2.21	226
Sub Tota	l	34.16	0.71	0.28	535	313	0.90	678
Mina	0.0 to 0.3	4.35	0.24	0.65	23	91	0.68	65
Seca	0.3 to 1.0	12.29	0.46	0.49	125	193	0.79	214
	> 1.0	2.72	2.41	0.54	145	47	2.78	167
Sub Total		19.36	0.69	0.53	293	331	1.04	444
Total	> 0.3% CuEa	53.52	0.70	0.37	827	644	0.95	1,122

*Mineral Resources are not Mineral Reserves do not have demonstrated economic viability. Mineral resources are reported above a conceptual pit shell, and using a copper equivalent cut-off of 0.3% and apply assumed metal recoveries of 90% for Cu and 80% for Au. No metallurgical test work has yet been undertaken by Cordoba.

Outside of the Inferred Mineral Resource, there is unclassified copper-gold mineralization identified in the grade shell models that either lacks confidence in grade and geological continuity (e.g. Mina Este, Figure 4, legend item 4) or is at depth below the -25m RL This mineralization provides immediate drilling targets for potential mineral resource additions.

Further drilling may be expected to increase the confidence levels in, and also potentially add, mineral resources. The Company expects to update the Mineral Resources during the second quarter of 2017 after the expected completion of its current drilling program. The Alacran system remains open to depth along much of its strike length and surface copper-gold geochemical anomalies indicate the potential for largely untested mineralized zones to the east and west of current mineral resources.

Alacran Option Agreement

The Joint Venture has an option (the "Option") to earn a 100% interest in the Alacran Project by completing the remaining commitments (see Cordoba news release dated October 21, 2015):

- A US\$250,000 payment to Sociedad Ordinaria de Minas Omni ("OMNI") on the 24month anniversary of signing the Letter of Intent ("LOI").
- A US\$1,000,000 payment to OMNI on the 24-month anniversary of completion of the Definitive Agreement.
- Cordoba will file with the Colombian government for the relevant approvals to conduct activities of construction and commercial production at Alacran before June 30, 2018.
- A US\$14,000,000 payment to OMNI when the environmental license and all other approvals, permits or licenses required to commence the construction and operation of a commercial mine at Alacran have been granted on a final basis by the Colombian government.

OMNI will retain a 2% net smelter royalty with advance royalty payments of US\$500,000 commencing three years after receipt of approvals to commence construction at Alacran or six years after filing for approval to commence construction at Alacran. HPX has previously purchased a 50.1% interest in OMNI (see Cordoba news release dated April 6, 2016).

Technical Information

The current mineral resource estimate was completed by MA, under the direction of Ian Taylor MAusIMM (CP), an independent Qualified Person as defined by NI 43-101. The QP visited the El Alacran property and supervised the geological modelling input to the current study. CIMM definitions and guidelines were followed for Mineral Resource estimation based on the parameters outlined above. Readers are reminded that Inferred Mineral Resources do not have demonstrated economic viability. Mr. Taylor has reviewed this news release and consented to the inclusion of extracts from, or a summary of, the technical information prepared under his direction and supervision. A technical report providing details of the Inferred Mineral Resource estimate will be filed on SEDAR (www.sedar.com) within 45 days.

The technical content of this news release has been compiled, reviewed and verified by Vic Wall, PhD, a Qualified Person for the purpose of NI 43-101. Dr. Wall is a geologist with over 45 years in the minerals mining, consulting, exploration and research industries and is a Fellow of the Australian Institute of Geoscientists (AIG).

About San Matias Project

The San Matias Copper-Gold Project comprises a 20,000-hectare land package on the inferred northern extension of the richly endowed Mid-Cauca Belt in Colombia. The project contains several known areas of porphyry copper-gold mineralization, copper-gold skarn mineralization and vein-hosted, gold-copper mineralization. Porphyry mineralization at the San Matias Project incorporates high-grade zones of copper-gold mineralization hosted by diorite porphyries containing secondary biotite alteration and various orientations of sheeted and stock-work quartz-magnetite veins with chalcopyrite and bornite. The hydrothermal copper-gold mineralization at Alacran is associated with stratabound replacements and veining of a marine volcano-sedimentary sequence in the vicinity of dioritic intrusions. The nature of mineralization encountered at San Matias is similar to other large high-grade copper-gold deposits.

Joint Venture Agreement

The San Matias Project is a joint venture between Cordoba and HPX, a private mineral exploration company founded by mining entrepreneur Robert Friedland. HPX has earned a 51% interest in the San Matias Project and has entered Phase Three of the Joint Venture Agreement, whereby HPX can earn up to 65% by carrying the project to feasibility.

About High Power Exploration

HPX is a privately owned, metals-focused exploration company deploying proprietary in-house geophysical technologies to rapidly evaluate buried geophysical targets. The HPX technology cluster comprises geological and geophysical systems for targeting, modelling, survey optimization, acquisition, processing and interpretation. HPX has a highly experienced board and management team led by Chairman and Chief Executive Officer Robert Friedland, Co-Chairman Ian Cockerill, a former Chief Executive Officer of Gold Fields, and President Eric Finlayson, a former head of exploration at Rio Tinto. For further information, please visit www.hpxploration.com.

About Cordoba Minerals

Cordoba Minerals Corp. is a Toronto-based mineral exploration company focused on the exploration and acquisition of copper and gold projects in Colombia. Cordoba has a joint venture with High Power Exploration on the highly prospective, district-scale San Matias Copper-Gold Project located close to sea level with excellent infrastructure and near operating open-pit mines in the Department of Cordoba. For further information, please visit www.cordobaminerals.com.

ON BEHALF OF THE COMPANY

Mario Stifano, President and CEO Cordoba Minerals Corp.

Email: info@cordobamineralscorp.com Website: www.cordobaminerals.com

Neither the TSX Venture Exchange nor the Investment Industry Regulatory Organization of Canada accepts responsibility for the adequacy or accuracy of this release.

Forward-Looking Statements

This news release includes certain "forward-looking information" within the meaning of Canadian securities legislation. Forward-looking statements include predictions, projections and forecasts and are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "estimate", "forecast", "expect", "potential", "project", "target", "schedule", budget" and "intend" and statements that an event or result "may", "will", "should", "could" or "might" occur or be achieved and other similar expressions and includes the negatives thereof. All statements other than statements of historical fact included in this release, including, without limitation, statements regarding the potential of the Company's properties are forward-looking statements that involve various risks and uncertainties. There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from those anticipated in such statements. Forward-looking statements are based on a number of material factors and assumptions. Important factors that could cause actual results to differ materially from Company's expectations include actual exploration results, changes in project parameters as plans continue to be refined, future metal prices, availability of capital and financing on acceptable terms, general economic, market or business conditions, uninsured risks, regulatory changes, delays or inability to receive required approvals, and other exploration or other risks detailed herein and from time to time in the filings made by the Company with securities regulators. Although the Company has attempted to identify important factors that could cause actual actions, events or results to differ from those described in forward-looking statements, there may be other factors that cause such actions, events or results to differ materially from those anticipated. There can be no assurance that forwardlooking statements will prove to be accurate and accordingly readers are cautioned not to place undue reliance on forward-looking statements which speak only as of the date of this news release. The Company disclaims any intention or obligation, except to the extent required by law, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

Figure 1: Plan view of Alacran geological model showing generally west-dipping lithostratigraphy, with mafic to intermediate volcanics & volcaniclastics in the east and footwall to the main copper-gold mineralised zones hosted mainly by avolcaniclastic -epiclastic sequence that is intruded by intermediate sills and also larger dioritic bodies in the west and north. Mineralization also locally overprints the intrusions.

Figure 2: Plan view of copper-gold mineralization "grade" shells, drill-hole traces and conceptual Whittle pit shell

Figure 3: 3D view (towards north-east) of west-dipping "grade" shells under Lidar topography, draped by surface imagery.

Figure 4: Copper-gold mineral resources in the Inferred category and unclassified mineralized material in relation to a conceptual Whittle pit shell and drill-hole traces, 3D view towards northeast.

Figure 5: Section 855740mN showing drilling results and the broad width of Inferred mineral resource copper grades within a conceptual pit. Copper-gold mineralization may extend to depth below the resource blocks and also below the conceptual pit

Figure 6: Section 855720mN showing drilling results and the broad width of Inferred mineral resource copper grades within a conceptual pit. Copper-gold mineralization may extend to depth below the resource blocks and also below the conceptual pit. Figure 4 & Figure 5 may be compared to give an impression of the north-south continuity of mineralization

		From	То	Intorval			%CuEa
HoleID		(m)	(m)	(m)	% CuEq	Summary	Cutoff
		53	68	15	0.37	15m @ 0.25% Cu + 0.15g/t Au (from 53m)	0.30%
		76	91 91	15	0.57	15m @ 0.58% Cu + 0.02a/t Au (from 76m)	0.30%
		101	121	20	0.00	20m @ 0.33% Cu + 0.09g/t Au (from 101m)	0.30%
		101	121	20	0.40	120m @ 0.87% Cu + 0.35g/t Au (from	0.0070
		128	248	120	1.14	128m)	0.30%
	including	143	156	13	1.97	13m @ 1.4% Cu + 0.74g/t Au (from 143m)	1.00%
ACD001	and	153	156	3	4.21	3m @ 3.25% Cu + 1.26g/t Au (from 153m)	2.00%
	and	163	212	49	1.54	49m @ 1.23% Cu + 0.41g/t Au (from 163m)	1.00%
	and	170	175	5	3.88	5m @ 3.29% Cu + 0.78g/t Au (from 170m)	2.00%
	and	179	184	5	2.43	5m @ 2.06% Cu + 0.48g/t Au (from 179m)	2.00%
	and	225	234	9	1.00	9m @ 0.77% Cu + 0.3g/t Au (from 225m)	1.00%
		264	272	8	0.53	8m @ 0.48% Cu + 0.07g/t Au (from 264m)	0.30%
		107	227	120	0.76	120m @ 0.56% Cu + 0.26g/t Au (from 107m)	0.30%
ACD002	including	158	177	19	2.39	19m @ 1.92% Cu + 0.62g/t Au (from 158m)	1.00%
	and	166	176	10	3.36	10m @ 2.72% Cu + 0.85g/t Au (from 166m)	2.00%
		249	262	13	0.46	13m @ 0.42% Cu + 0.06g/t Au (from 249m)	0.30%
		98	113	15	0.87	15m @ 0.65% Cu + 0.29g/t Au (from 98m)	0.30%
ACDUUS		130	193	63	0.47	63m @ 0.37% Cu + 0.14g/t Au (from 130m)	0.30%
		42	92	50	0.62	50m @ 0.53% Cu + 0.12g/t Au (from 42m)	0.30%
	including	69	74	5	2.08	5m @ 1.84% Cu + 0.32g/t Au (from 69m)	1.00%
	and	85	89	4	1.20	4m @ 0.94% Cu + 0.35g/t Au (from 85m)	1.00%
ACD004		101	197	96	0.75	96m @ 0.61% Cu + 0.19g/t Au (from 101m)	0.30%
	including	122	127	5	1.21	5m @ 1.06% Cu + 0.2g/t Au (from 122m)	1.00%
	and	138	145	7	1.95	7m @ 1.54% Cu + 0.54g/t Au (from 138m)	1.00%
	and	141	144	3	2.73	3m @ 2.19% Cu + 0.71g/t Au (from 141m)	2.00%
	and	184	190	6	1.19	6m @ 0.93% Cu + 0.35g/t Au (from 184m)	1.00%
		204	215	11	0.71	11m @ 0.55% Cu + 0.21g/t Au (from 204m)	0.30%
		7	64	57	2.04	57m @ 1.52% Cu + 0.68g/t Au (from 7m)	0.30%
	including	19	21	2	5.52	2m @ 1.96% Cu + 4.7g/t Au (from 19m)	2.00%
ACDUUS	and	33	45	12	7.15	12m @ 5.81% Cu + 1.77g/t Au (from 33m)	1.00%
	and	33	41	8	10.47	8m @ 8.57% Cu + 2.51g/t Au (from 33m)	2.00%
		0	80.5	80.5	0.74	80.5m @ 0.54% Cu + 0.26g/t Au (from 0m)	0.30%
	including	20	27	7	1.09	7m @ 0.54% Cu + 0.73g/t Au (from 20m)	1.00%
ACD006	and	31	35	4	1.12	4m @ 0.89% Cu + 0.3g/t Au (from 31m)	1.00%
	and	55	80.5	25.5	1.17	25.5m @ 0.86% Cu + 0.4g/t Au (from 55m)	1.00%
	and	74	76	2	2.72	2m @ 2.14% Cu + 0.76g/t Au (from 74m)	2.00%
		2	109	107	1.21	107m @ 0.95% Cu + 0.34g/t Au (from 2m)	0.30%
	including	19	38	19	1.96	19m @ 1.62% Cu + 0.45g/t Au (from 19m)	1.00%
	and	26	34	8	2.89	8m @ 2.38% Cu + 0.67g/t Au (from 26m)	2.00%
ACD006A	and	45	73	28	1.24	28m @ 1% Cu + 0.32g/t Au (from 45m)	1.00%
	and	56	59	3	2.12	3m @ 1.83% Cu + 0.38g/t Au (from 56m)	2.00%
	and	79	86	/	2.46	7m @ 1.85% Cu + 0.8g/t Au (from 79m)	1.00%
	and	79	86	1	2.46	7m @ 1.85% Cu + 0.8g/t Au (from 79m)	2.00%
	and	94	108	14	1.36	14m @ 0.98% Cu + 0.5g/t Au (from 94m)	1.00%
		2	1/	15	0.32	15m @ 0.1% Cu + 0.29g/t Au (from 2m)	0.30%
	المرابعة المرابع	24	104	80	0.90	80m @ 0.49% Cu + 0.53g/t Au (from 24m)	0.30%
A C D 007	including	38	42	4	1.35	4m @ 0.97% Cu + 0.49g/t Au (from 38m)	1.00%
	and	01 01	91	10	3.34	10111 世 0.98% Cu + 3.11g/t Au (from 81m)	1.00%
ACDUU/	and	01 110	04 100	3	1.4ð	311 ₩ 1.96% Cu + 7.269/t Au (from 81m)	2.00%
		110	129	1	0.32	52m @ 0.60% Cu + 0.25c/t Au (from 118m)	0.30%
	including	141	193	1/	0.00	14m @ 0.92% Cu + 0.25g/t Au (IIOIII 141III)	1 000/
	and	170	107	14 8	2.04	$1 \pm 10 = 0.32 \times 10^{-1} = 0.139/(1011 + 13311)$ 8m @ 1.34% Cu ± 0.97a/t Au (from 170m)	1.00%
1	anu	113	101	0	<u> </u>		1.0070

Table 3: Table of intercepts for Cordoba drill holes contained within this Mineral Resource estimate

HoleID		From	То	Interval	% CuEa	Summary	%CuEq
Tioleid		(m)	(m)	(m)		Summary	Cutoff
	and	182	185	3	2.75	3m @ 1.47% Cu + 1.69g/t Au (from 182m)	2.00%
		263	270	7	0.68	7m @ 0.34% Cu + 0.45g/t Au (from 263m)	0.30%
		31	105	74	0.75	74m @ 0.58% Cu + 0.23g/t Au (from 31m)	0.30%
	including	31	39	8	1.01	8m @ 0.99% Cu + 0.02g/t Au (from 31m)	1.00%
	and	87	101	14	2.12	14m @ 1.58% Cu + 0.7g/t Au (from 87m)	1.00%
ACD008	and	95	99	4	4.70	4m @ 3.83% Cu + 1.15g/t Au (from 95m)	2.00%
		113	140	27	0.86	27m @ 0.6% Cu + 0.35g/t Au (from 113m)	0.30%
	including	134	138	4	1.48	4m @ 1.17% Cu + 0.41g/t Au (from 134m)	1.00%
		187	202	15	0.94	15m @ 0.78% Cu + 0.21g/t Au (from 187m)	0.30%
	including	189	198	9	1.13	9m @ 0.93% Cu + 0.26g/t Au (from 189m)	1.00%
		12	119	107	0.97	107 m @ 0.57% Cu + 0.53g/t Au (from 12m)	0.30%
	including	43	50	7	1.19	7m @ 1.06% Cu + 0.16g/t Au (from 43m)	1.00%
	and	59	66	7	5.30	7m @ 0.69% Cu + 6.08g/t Au (from 59m)	1.00%
	and	59	62	3	11.27	3m @ 0.64% Cu + 14.02g/t Au (from 59m)	2.00%
	and	83	90	7	2.36	7m @ 1.84% Cu + 0.67g/t Au (from 83m)	1.00%
ACD009	and	83	89	6	2.53	6m @ 1.98% Cu + 0.72g/t Au (from 83m)	2.00%
	and	97	108	11	1.55	11m @ 1.26% Cu + 0.38g/t Au (from 97m)	1.00%
	and	101	104	3	2.33	3m @ 1.8% Cu + 0.7g/t Au (from 101m)	2.00%
		146	181	35	1.74	35m @ 1.39% Cu + 0.45g/t Au (from	0.30%
	including	148	165	17	2.83	14011) 17m @ 2 26% Cu + 0 74o/t Au (from 148m)	1 00%
	and	158	164	6	4 90	6m @ 3.88% Cu + 1.35q/t Au (from 158m)	2.00%
	and	2	31	29	0.50	29m @ 0.22% Cu + 0.38g/t Au (from 2m)	0.30%
		38	64	26	0.88	26m @ 0.63% Cu + 0.33g/t Au (from 38m)	0.00%
	including	38	48	10	1.07	10m @ 0.53% Cu + 0.71q/t Au (from 38m)	1.00%
	including	60	64	4	1.67	4m @ 1.59% Cu + 0.08g/t Au (from 60m)	1.00%
-		77	96	19	1.35	19m @ 1.31% Cu + 0.05g/t Au (from 77m)	0.30%
	including	77	91	14	1 72	14m @ 1.67% Cu + 0.06g/t Au (from 77m)	1.00%
ACD010	including	78	83	5	2.06	5m @ 1.96% Cu + 0.13g/t Au (from 78m)	2.00%
	including	103	124	21	0.48	21m @ 0.4% Cu + 0.11a/t Au (from 103m)	0.30%
		142	178	36	0.95	36m @ 0.78% Cu + 0.22g/t Au (from	0.30%
	including	151	160	0	2.06	$\frac{142m}{9m @ 1.67\% Cu \pm 0.52a/t Au (from 151m)}$	1.00%
	and	152	150	9 7	2.00	$7m @ 1.8\% Cu \pm 0.52g/t Au (from 152m)$	2.00%
	anu	206	218	12	0.30	$12m @ 0.28\% Cu \pm 0.030/t Au (from 206m)$	0.30%
		200	210 08	95	0.50	$95m @ 0.51\% Cu \pm 0.090/t Au (from 3m)$	0.30%
	including	3 13	28	3 5 15	1 15	15m @ 1.08% Cu + 0.08g/t Au (from 13m)	1.00%
	including	10	20	10	0.07	82m @ 0.71% Cu + 0.34g/t Au (from	0.000/
		111	193	82	0.97	111m)	0.30%
100040	including	138	154	16	1.22	16m @ 0.76% Cu + 0.61g/t Au (from 138m)	1.00%
ACDUTZ	and	150	154	4	2.15	4m @ 1% Cu + 1.52g/t Au (from 150m)	2.00%
	and	162	187	25	1.52	25m @ 1.21% Cu + 0.41g/t Au (from 162m)	1.00%
	and	164	167	3	2.47	3m @ 1.91% Cu + 0.75g/t Au (from 164m)	2.00%
	and	178	181	3	2.27	3m @ 1.77% Cu + 0.65g/t Au (from 178m)	2.00%
		217	235	18	0.32	18m @ 0.25% Cu + 0.1g/t Au (from 217m)	0.30%
		1	78	77	0.84	77m @ 0.72% Cu + 0.15g/t Au (from 1m)	0.30%
	including	24	36	12	2.33	12m @ 1.97% Cu + 0.47g/t Au (from 24m)	1.00%
ACD013	and	29	35	6	3.88	6m @ 3.21% Cu + 0.88g/t Au (from 29m)	2.00%
ACDUIS		123	133	10	0.52	10m @ 0.4% Cu + 0.15g/t Au (from 123m)	0.30%
		143	160	17	0.78	17m @ 0.68% Cu + 0.12g/t Au (from 143m)	0.30%
	including	146	150	4	1.57	4m @ 1.32% Cu + 0.34g/t Au (from 146m)	1.00%
		1	7	6	0.41	6m @ 0.23% Cu + 0.25g/t Au (from 1m)	0.30%
		39	91	52	1.31	52m @ 0.93% Cu + 0.5g/t Au (from 39m)	0.30%
ACD014	including	47	73	26	1.84	26m @ 1.38% Cu + 0.6g/t Au (from 47m)	1.00%
	and	51	57	6	2.55	6m @ 1.9% Cu + 0.85g/t Au (from 51m)	2.00%
	and	60	67	7	2.28	7m @ 1.65% Cu + 0.83g/t Au (from 60m)	2.00%
	and	87	91	4	2.31	4m @ 0.92% Cu + 1.83g/t Au (from 87m)	1.00%

		From	То	Interval	0/ C	Summent	%CuEq
HoleiD		(m)	(m)	(m)	% CuEq	Summary	Cutoff
		99	110	11	0.35	11m @ 0.06% Cu + 0.38g/t Au (from 99m)	0.30%
		3	24	21	0.76	21m @ 0.69% Cu + 0.08g/t Au (from 3m)	0.30%
A C D 0 1 5	including	7	12	5	1.22	5m @ 1.01% Cu + 0.27g/t Au (from 7m)	1.00%
ACDUIS		38	44	6	0.31	6m @ 0.29% Cu + 0.02g/t Au (from 38m)	0.30%
		64	70	6	0.44	6m @ 0.22% Cu + 0.3g/t Au (from 64m)	0.30%
		0	24	24	0.48	24m @ 0.35% Cu + 0.16g/t Au (from 0m)	0.30%
ACD016		50	65	15	0.31	15m @ 0.21% Cu + 0.12g/t Au (from 50m)	0.30%
		87	101	14	0.30	14m @ 0.06% Cu + 0.33g/t Au (from 87m)	0.30%
		128	135	7	0.50	7m @ 0.24% Cu + 0.34g/t Au (from 128m)	0.30%
		1	26	25	0.40	25m @ 0.31% Cu + 0.12g/t Au (from 1m)	0.30%
ACD017		34	61	27	0.33	27m @ 0.28% Cu + 0.06g/t Au (from 34m)	0.30%
		84	121	37	0.43	37m @ 0.35% Cu + 0.11g/t Au (from 84m)	0.30%
		8	14	6	0.35	6m @ 0.28% Cu + 0.08g/t Au (from 8m)	0.30%
		24	73	49	0.79	49m @ 0.61% Cu + 0.23g/t Au (from 24m)	0.30%
	including	39	60	21	1.31	21m @ 0.99% Cu + 0.42g/t Au (from 39m)	1.00%
ACD018	and	45	49	4	2.55	4m @ 2.17% Cu + 0.5g/t Au (from 45m)	2.00%
		102	109	7	0.56	7m @ 0.33% Cu + 0.3g/t Au (from 102m)	0.30%
		128	182	54	0.85	54m @ 0.57% Cu + 0.37g/t Au (from 128m)	0.30%
	including	153	157	4	1.40	4m @ 0.78% Cu + 0.82g/t Au (from 153m)	1.00%
	and	165	172	7	1.56	7m @ 1.21% Cu + 0.46g/t Au (from 165m)	1.00%
	and	167	169	2	2.90	2m @ 2.44% Cu + 0.61g/t Au (from 167m)	2.00%
		212	218	6	2.05	6m @ 1.78% Cu + 0.35g/t Au (from 212m)	0.30%
		212	215	3	3.35	3m @ 2.86% Cu + 0.64g/t Au (from 212m)	2.00%
		70	85	15	0.77	15m @ 0.72% Cu + 0.06g/t Au (from 70m)	0.30%
	including	72	76	4	1.14	4m @ 1.06% Cu + 0.11g/t Au (from 72m)	1.00%
ACD019		101	109	8	0.92	8m @ 0.9% Cu + 0.03g/t Au (from 101m)	0.30%
	including	102	106	4	1.07	4m @ 1.05% Cu + 0.03g/t Au (from 102m)	1.00%
		123	131	8	0.40	8m @ 0.36% Cu + 0.04g/t Au (from 123m)	0.30%
ACD020		1	7	6	0.40	6m @ 0.21% Cu + 0.25g/t Au (from 1m)	0.30%
		0	13	13	0.38	13m @ 0.29% Cu + 0.11g/t Au (from 0m)	0.30%
100000		24	46	22	1.86	22m @ 1.36% Cu + 0.67g/t Au (from 24m)	0.30%
ACD021	including	26	35	9	3.77	9m @ 2.73% Cu + 1.38g/t Au (from 26m)	1.00%
	and	26	32	6	5.18	6m @ 3.67% Cu + 1.99g/t Au (from 26m)	2.00%
		25	54	29	0.87	29m @ 0.73% Cu + 0.18g/t Au (from 25m)	0.30%
	including	25	30	5	1.33	5m @ 1.13% Cu + 0.27g/t Au (from 25m)	1.00%
ACD022		70	133	63	0.77	63m @ 0.63% Cu + 0.19g/t Au (from 70m)	0.30%
	including	84	90	6	1.28	6m @ 1.09% Cu + 0.25g/t Au (from 84m)	1.00%
	and	97	124	27	1.09	27m @ 0.86% Cu + 0.3g/t Au (from 97m)	1.00%
		142	188	46	0.69	46m @ 0.55% Cu + 0.19g/t Au (from 142m)	0.30%
	includina	182	188	6	1.05	6m @ 0.86% Cu + 0.25g/t Au (from 182m)	1.00%
		199	215	16	0.66	16m @ 0.62% Cu + 0.05g/t Au (from 199m)	0.30%

Table 4: Coordinates for Cordoba drill holes used in this Mineral Resource estimate

HoleID	East **	North **	RL **	Final Depth	Azimuth	Dip	Туре
ACD001	418914	855761	210	280	85	-52	DD
ACD002	418910	855812	218	306.2	90	-57	DD
ACD003	418951	855863	212	290.7	90	-68	DD
ACD004	418972	855759	228	323	85	-51	DD
ACD005	419063	855914	255	240	90	-50	DD

ACD006	419060	855870	248	80.5	90	-60	DD
ACD006A	419074	855867	250	301	90	-60	DD
ACD007	418975	855719	226	307.8	85	-46	DD
ACD008	418957	855669	224	300	90	-51	DD
ACD008A	418961	855666	224	56.4	90	-50	DD
ACD009	419029	855758	227	283.5	85	-53	DD
ACD010	419029	855714	234	308	85	-54	DD
ACD011	419064	855957	258	442.3	85	-58	DD
ACD012	418932	855721	206	304.6	85	-49	DD
ACD013	419089	855783	209	315	88	-52	DD
ACD014	419180	855783	188	313.2	88	-56	DD
ACD015	419342	855782	179	358	88	-56	DD
ACD016	419156	855051	227	314.3	88	-56	DD
ACD017	419306	855065	198	315.9	88	-57	DD
ACD018	419125	855247	205	302.2	88	-55	DD
ACD019	419277	855251	168	300	88	-55	DD
ACD020	419455	855249	153	279.2	88	-55	DD
ACD021	419224	855782	189	130.9	88	-54	DD
ACD022	419017	855803	226	313.5	88	-55	DD

** WGS84 UTM